| RSS
Business center
Office
Post trade leads
Post
Rank promotion
Ranking
 
You are at: Home » News » International »

The MIT approach relies on a combination of two readily available components

Increase font size  Decrease font size Date:2015-02-26   Views:468
     The MIT team set out to create a gel that could survive strong mechanical forces, known as shear forces, and then reform itself. Other researchers have created such gels by engineering proteins that self-assemble into hydrogels, but this approach requires complex biochemical processes. The MIT team wanted to design something simpler.
 
  "We're working with really simple materials," Tibbitt says. "They don't require any advanced chemical functionalization."
 
  The MIT approach relies on a combination of two readily available components. One is a type of nanoparticle formed of PEG-PLA copolymers, first developed in Langer's lab decades ago and now commonly used to package and deliver drugs. To form a hydrogel, the researchers mixed these particles with a polymer - in this case, cellulose.
 
  Each polymer chain forms weak bonds with many nanoparticles, producing a loosely woven lattice of polymers and nanoparticles. Because each attachment point is fairly weak, the bonds break apart under mechanical stress, such as when injected through a syringe. When the shear forces are over, the polymers and nanoparticles form new attachments with different partners, healing the gel.
 
  Using two components to form the gel also gives the researchers the opportunity to deliver two different drugs at the same time. PEG-PLA nanoparticles have an inner core that is ideally suited to carry hydrophobic small-molecule drugs, which include many chemotherapy drugs. Meanwhile, the polymers, which exist in a watery solution, can carry hydrophilic molecules such as proteins, including antibodies and growth factors.
 
 
 
[ Search ]  [ ]  [ Email ]  [ Print ]  [ Close ]  [ Top ]

 
Total:0comment(s) [View All]  Related comment

 
Recomment
Popular
 
 
Home | About | Service | copyright | agreement | contact | about | SiteMap | Links | GuestBook | Ads service | 京ICP 68975478-1
Tel:+86-10-68645975           Fax:+86-10-68645973
E-mail:yaoshang68@163.com     QQ:1483838028