Army researchers reached a breakthrough in the nascent science of
two-dimensional polymers thanks to a collaborative program that enlists
the help of lead scientists and engineers across academia known as joint
faculty appointments.
Researchers from the U.S. Army Combat Capabilities Development Command, now known as DEVCOM, Army Research Laboratory partnered with Prof. Steve Lustig, a joint faculty appointment at Northeastern University, to accelerate the development of 2-D polymers for military applications.
The collaboration with ARL Northeast led to a groundbreaking study published in the peer-reviewed scientific journal Macromolecules. Editors featured the research in a cover article.
"2-D polymers have been studied very seriously from a synthetic viewpoint for only about 10 years," said Dr. Eric Wetzel, research area leader for Soldier Materials at the laboratory. "They represent a new, relatively unexplored class of materials with tremendous potential."
According to Wetzel, 2-D polymers have a very repeatable, symmetric pattern akin to "chicken wire," which offers access to more structural enhancements compared to one-dimensional, linear polymers like Kevlar.
In an effort to gauge the full potential of these materials, Army researchers have started to computationally design 2-D polymers in the hopes that they may develop a superior alternative to conventional aramid fibers for applications such as armor and fire-resistant clothing.
Prof. Steve Lustig, a joint faculty appointment at Northeastern University, uses his industry experience with DuPont to help Army researchers calculate the environmental durability of simulated 2-D polymers.
In order to properly create a 2-D polymer that can withstand real-world conditions, Army researchers sought the aid of Lustig, who previously worked at DuPont Central Research & Development for over two decades before he became an associate professor with tenure at Northeastern University.
"The idea of the 2-D polymer project is essentially to make a 2-D version of Kevlar," Lustig said. "I had over a decade of experience working with the Kevlar business in various aspects of liquid crystalline polymer polymerization, processing and properties. The ARL team believed that my background would be helpful."
Lustig explained that he had first learned about the laboratory in the mid-2000s when he came in contact with Dr. Kenneth Strawhecker, an Army scientist who had reached out to DuPont in search for industry collaborations.